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A method for generating three-dimensional, time-dependent turbulent inflow data
for simulations of complex spatially developing boundary layers is described. The ap-
proach is to extract instantaneous planes of velocity data from an auxiliary simulation
of a zero pressure gradient boundary layer. The auxiliary simulation is also spatially
developing, but generates its own inflow conditions through a sequence of operations
where the velocity field at a downstream station is rescaled and re-introduced at the
inlet. This procedure is essentially a variant of the Spalart method, optimized so
that an existing inflow–outflow code can be converted to an inflow-generation de-
vice through the addition of one simple subroutine. The proposed method is shown
to produce a realistic turbulent boundary layer which yields statistics that are in
good agreement with both experimental data and results from direct simulations.
The method is used to provide inflow conditions for a large eddy simulation (LES)
of a spatially evolving boundary layer spanning a momentum thickness Reynolds
number interval of 1530–2150. The results from the LES calculation are compared
with those from other simulations that make use of more approximate inflow con-
ditions. When compared with the approximate inflow generation techniques, the
proposed method is shown to be highly accurate, with little or no adjustment of the
solution near the inlet boundary. In contrast, the other methods surveyed produce a
transient near the inlet that persists several boundary layer thicknesses downstream.
Lack of a transient when using the proposed method is significant since the adverse
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effects of inflow errors are typically minimized through a costly upstream elonga-
tion of the mesh. Extension of the method for non-zero pressure gradients is also
discussed. c© 1998 Academic Press

1. INTRODUCTION

Spatially evolving turbulent flows pose a particular challenge to numerical simulation
approaches due to the need to prescribe time-dependent turbulent inflow conditions at the
upstream boundary. In most cases the flow downstream is highly dependent on the conditions
at the inlet, making it necessary to specify a realistic time series of turbulent fluctuations
that are in equilibrium with the mean flow. This requirement often dictates that the inflow
data should satisfy the Navier–Stokes equations, which in turn implies that an independent
simulation be used to generate them. Detailed simulations for the purpose of creating
inflow conditions can be costly and thus certain levels of approximation are desirable. In
this paper we shall focus on an approximate yet accurate method for generating inflow
conditions for spatially developing turbulent boundary layer simulations. The proposed
method is essentially a simplification of the method of Spalart and Leonard [2], who devised
an ingenious transformation that allows for the calculation of spatially evolving boundary
layers in conjunction with periodic boundary conditions applied in the streamwise direction.
While this method is elegant and highly accurate, it is more complicated than is necessary
for the purpose of generating inflow data. A few key approximations are used in this work
to arrive at a “modified Spalart method” that is very easy to implement and efficient to
use. The new method is shown to yield results that compare well with the computations
of Spalart [1]. It is also shown to produce very accurate inflow data while requiring only a
small computational overhead.

2. SURVEY OF EXISTING INFLOW GENERATION TECHNIQUES

In order to justify our approach more fully, we first survey several of the existing turbu-
lent inflow generation techniques and comment on their shortcomings. Perhaps the most
straightforward approach to simulate a spatially developing turbulent boundary is to start
the calculation far upstream with a laminar profile plus some random disturbances and then
allow a natural transition to turbulence to occur. This approach has been used in simula-
tions focusing on the transition process itself [3] and has the advantage that no turbulent
fluctuations are required at the inlet. The procedure is not generally applicable to turbulent
simulations, since, simulating the transition process is in itself a very costly venture and
coupling this with a complex simulation for the downstream flow would be prohibitively
expensive.

In order to reduce the cost associated with simulation of the transition process, most
spatially evolving simulations start with an inflow boundary that is displaced only a short
distance upstream of the region of interest. Ideally, one would like to provide sufficiently
accurate inflow conditions at this boundary so that a realistic turbulent boundary layer
with the correct skin friction and integral thicknesses is achieved within a short distance
downstream. In practice, this is not always possible and the inflow boundary may have
to be displaced further upstream in order to allow for relaxation of the errors made in
approximating the inflow conditions. The inclusion of such a “development section” adds
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to the overall cost of the simulation and therefore one would like to minimize its extent. At
the same time, one would like to minimize the cost associated with generating the inflow data
themselves. Unfortunately, these are conflicting requirements as simpler inflow generation
techniques typically contain more error and therefore require a longer development section.

The simplest procedure for specifying turbulent inflow conditions is to superpose random
fluctuations on a desired mean velocity profile. The amplitude of the random fluctuations
can be constrained to satisfy a desired set of one-point, second-order statistics (i.e., Reynolds
stress tensor). It is much more difficult to specify phase relationships between the velocity
fluctuations, however, and these are invariably generated at random. Without proper phase
information higher order correlations are incorrect and the flow lacks realistic turbulent
structure. In addition, the velocity derivative skewness is zero and thus the inflow condition
is void of nonlinear energy transfer. While synthetic turbulent fluctuations are easy to
generate with the random method, a fairly lengthy development section must be used in
order to allow for the development of organized turbulent motion.

Despite its shortcomings, the random fluctuation approach has been used with varying
degrees of success. Leeet al. [4] used the approach for direct numerical simulation (DNS)
of compressible isotropic turbulence, with and without the presence of a normal shock
wave. They found that isotropic turbulence develops relatively quickly out of the random
fluctuations and that the correct velocity derivative skewness was achieved after about two
integral length scales of streamwise evolution. Rai and Moin [3] used a similar method to
produce isotropic free-stream disturbances in DNS of the laminar-turbulent transition in a
spatially developing boundary layer. Le and Moin [5, 6] extended this procedure to generate
anisotropic turbulence and used the method to produce inflow fluctuations for DNS of a
backward-facing step. Although a development section of 10 boundary layer thicknesses
was used due to cost constraints, separate tests on a spatially evolving channel flow indicated
that nearly 20 boundary layer thicknesses were required to recover the correct skin friction.
Evidently the drastic changes to the flow caused by the massive separation overshadowed
any residual errors in the quality of the turbulent boundary layer upstream of the step.
Akselvoll and Moin [7, 8] attempted to use the same inflow method for their repeat of the
backward-facing step using large eddy simulation (LES). Compared to Le and Moin [5, 6],
they found that the random fluctuations did not develop nearly as rapidly on the coarser
LES mesh. They opted to extract a time series of inflow data from a separate boundary layer
calculation that made use of the random fluctuation method on a mesh that was refined in
the spanwise and wall-normal directions. The streamwise extent for the inflow calculation
was 25 boundary layer thicknesses. Good results for the flow downstream were obtained
by supplying the velocity time series at the inflow boundary located 0.3 boundary layer
thicknesses upstream of the step.

While the random fluctuation method has the obvious disadvantage that it requires a
lengthy and therefore costly development section, it has a second, perhaps more serious,
problem in that it is very hard to control the skin friction and integral thicknesses at the end
of the development section (where one would really like to specify them). This difficulty
is due to the fact that the transient which takes place in the development section is non-
physical and therefore the evolution of the various boundary layer characteristics is not
well described by standard empirical relations. Thus, it is extremely difficult to guess
the upstream values of skin friction, momentum thickness, etc., so that these parameters
evolve to the desired values by the end of the development section. This problem was one
of the motivating factors that led Akselvoll and Moin [7, 8] to split the inflow calculation
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into a separate simulation. By doing this, they were able to run the inflow simulation until it
was stationary and then to choose a downstream station from which to extract inflow data,
where the skin friction and boundary layer thickness were fairly close to the target values.
Even after doing this, however, they were unable to simultaneously match both the skin
friction and boundary layer thickness. They opted to favor the boundary layer thickness,
which resulted in an underprediction of the skin friction by roughly 20%.

The procedure of Akselvoll and Moin [7, 8] is part of a more general class of methods
whereby inflow boundary conditions are extracted from a dedicated auxiliary simulation. In
these approaches, an “inflow generation” calculation is synchronized with the main simu-
lation. At each time step, the velocity field on a plane at a fixed streamwise location is
extracted from the inflow calculation and transferred to the inlet boundary of the main
simulation.Various levels of approximation can be made in the inflow simulations and
even the crudest of these will, in general, be more accurate than the random fluctuation
method.

While running an auxiliary simulation to generate inflow data might seem prohibitively
expensive, this is not necessarily the case. As we shall see, the use of actual simulation data
for an inlet condition allows the development section to be either reduced or eliminated
altogether. The cost savings due to a reduction in the development length will more than
offset the cost of the auxiliary simulation in most cases.

The simplest auxiliary simulation approach for wall-bounded flows is to extract the
velocity field from a separate simulation of a fully developed “parallel flow” in which
periodic boundary conditions are imposed in both the streamwise and spanwise directions.
This approach is ideally suited to internal flows subjected to a nonuniformity such as a
diffuser, curve, or sudden expansion. Periodic boundary conditions are appropriate for fully
developed flow, and inflow data extracted from such a calculation can be introduced to a
spatially evolving simulation without need for a development section. This approach was
used by Kaltenbach [9], where a periodic channel flow simulation was used to generate
inflow conditions for LES of a plane diffuser.

A similar approach can be used to generate inflow conditions for spatially developing
boundary layers. Again, periodic boundary conditions are used in the streamwise and span-
wise directions, but a symmetry condition (vanishing vertical derivatives of the streamwise
and spanwise velocity components, as well as vanishing vertical velocity) at the upper
“wall” results in a boundary layer-like mean profile. This approach is economical and has
the advantage that the inflow turbulence is fully developed. On the other hand, a parallel-flow
boundary layer has no mean advection. When used as an inflow condition, a development
section will be needed to establish the correct boundary layer spatial growth characteristics.
The parallel-flow boundary layer method was used by Lund [10] and Lund and Moin [11]
to generate inflow for LES of a boundary layer on a concave wall. A development section of
10 boundary layer thicknesses was found to be sufficient to contain the adjustment region
and good results were obtained downstream of this position.

Accounting for spatial growth in the inflow condition requires a more sophisticated
approach than those outlined above. Spalart [1] developed a clever method to account for
spatial growth in simulations with periodic boundary conditions by adding source terms to
the Navier–Stokes equations (see also Spalart and Leonard [2]). This method should be ideal
for the task of inflow generation since it is capable of producing an equilibrium spatially
evolving boundary layer, with direct control of the skin friction and momentum thickness.
Despite its apparent advantages, there have been few attempts to use Spalart’s method for
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the purpose of inflow generation. Na and Moin [12] used a somewhat related procedure
to generate inflow data for DNS of attached and separated boundary layers. Instead of
advancing the simulation in time, they attempted to save cost by using Taylor’s hypothesis in
conjuction with a single realization of Spalart’s [1] velocity field to generate an approximate
time series. Amplitudes of the velocity fluctuations were modulated randomly in time in
an attempt to minimize the temporal periodicity inherited from application of Taylor’s
hypothesis to a spatially periodic domain. This method proved to be usable, although a
development section of more than 10 boundary layer thicknesses was required to relax the
errors associated with use of Taylor’s hypothesis in a strongly sheared flow. Lund and Moin
[11] advanced a Spalart-like simulation in time to generate inflow data for their simulation
of a boundary layer of a concave wall. They observed almost no transient downstream of
the inlet when this method was used.

3. TURBULENT INFLOW GENERATION METHOD

Based on our survey, it appears that a Spalart-type simulation run synchronously with the
main simulation produces the most accurate inflow condition and provides the best control
of the skin friction and momentum thickness. The only problem with the original Spalart
method is that it is somewhat complicated to understand and to program. As explained
below, the complications arise out of the need to introduce a coordinate transformation
that minimizes the streamwise inhomogeneity. The resulting transformed equations require
a special-purpose flow solver, as well as external inputs for the streamwise gradients of
mean flow variables. While these complications are necessary to arrive at a highly accurate
alogorithm for DNS studies, simplifications can be made for the task of generating inflow
data. In this work we shall focus on a “modified Spalart method” that does not apply a
coordinate transformation to the Navier–Stokes equations. Without a coordinate transfor-
mation, our method can be cast in a Cartesian coordinate system and can therefore make
use of a conventional flow solver. In fact, using our approach, an existing inflow–outflow
code can be converted to an inflow generation device through the addition of one simple
subroutine. The resulting algorithm is easy to understand and program and is very efficient
from a numerical standpoint. As we shall demonstrate, the method generates highly accurate
inflow data and gives complete control on the skin friction and momentum thickness. We
shall also demonstrate that it results in a significant savings in computational cost since a
development section is not needed.

3.1. Review of Spalart’s Original Method

The basic idea behind the method of Spalart and Leonard [2] is to define a set of coordinate
lines along which the streamwise inhomogeneity associated with the boundary layer growth
is minimized. When the Navier–Stokes equations are transformed into this coordinate sys-
tem the velocity field is approximately homogeneous in the streamwise direction and is thus
amenable to periodic boundary conditions. The periodic boundary conditions allow for a
“self-contained” simulation that does not require external inputs for the upstream and down-
stream boundaries. In addition, periodic boundary conditions allow for the use of a highly
accurate Fourier representation of the velocity field in the streamwise direction. While the
advantages of periodic boundary conditions are apparent, they come at the expense of a
more complicated set of equations to solve. The coordinate transformation introduces new
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terms to the Navier–Stokes equations that account for the inhomogeneity in the streamwise
direction. These so-called “growth terms” are both numerous and complicated in form.
Spalart was able to show that a few of the terms are of higher order and therefore could
be neglected. Several terms still remain, however, and these involve streamwise gradients
of the mean flow variables, which must be supplied externally. In his 1988 work, Spalart
advocates deducing these quantities from two or more simulations performed at different
Reynolds numbers.

3.2. Proposed Modification to Spalart’s Method

The main disadvantage of Spalart’s method is the need to evaluate the growth terms.
The presence of these terms requires a special flow solver along with the possibility of
having to perform multiple simulations in order to estimate streamwise gradients of the
mean flow quantities. In this section we propose a modification of Spalart’s method that
effectively eliminates the need to deal with the growth terms. This is achieved by electing
to transform only the boundary conditions, as opposed to the entire solution domain. In
effect, the proposed method computes a spatially evolving boundary layer in a Cartesian
coordinate system but makes use of the ideas of Spalart and Leonard [2] to create a quasi-
periodic boundary condition in the streamwise direction. This approach has the advantage
that an existing Cartesian inflow–outflow simulation code can be adapted for the purpose of
inflow generation by straightforward modifications to the streamwise boundary conditions.
Furthermore, the spatial development of the boundary layer is computed directly and only
a single empirical relation is required to relate the wall shear at the inlet boundary to the
solution downstream.

Our simplifications come at the expense of the loss of strict periodic boundary conditions
in the streamwise direction and therefore the inability to use a Fourier representation.This
is not a concern in the context of inflow generation, however, since the recipient spatially
evolving simulation will invariably use discrete operators. There is little to be gained from
generating inflow data with a numerical method that is significantly more accurate than the
one used in the main simulation. In fact, our experience has been that nonphysical transients
often arise near the inlet boundary when inflow data generated with a high fidelity method
are subjected to the increased numerical errors associated with the use of lower order
approximations in the inflow–outflow simulation.

The heart of our method is a means of estimating the velocity at the inlet plane, based on the
solution downstream. In particular, we extract the velocity field from a plane near the domain
exit, make use of the ideas of Spalart and Leonard [2] to rescale it, and then reintroduce it as
a boundary condition at the inlet.1 A conventional convective outflow boundary condition
(described in more detail below) is applied at the exit boundary. In effect, this procedure
results in a straightforward spatially evolving simulation that generates its own inflow data.
Coding changes are minimal since the only required modification is a single subroutine
used to rescale the velocity from the downstream station.

In order to arrive at our rescaling procedure, we follow Spalart and Leonard [2] who first
decomposed the velocity into a mean and fluctuating part and then applied the appropriate

1 Our approach has some vague similarities with the more elaborate method of Spalart and Watmuff [13] who
add source terms to the Navier–Stokes equations in the “fringe” region in an attempt to reverse spatial development
effects prior to reassigning the downstream velocity field to the inlet.
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scaling laws to each component separately. The decomposition is achieved by defining the
mean (denoted by upper case) as an average in the spanwise direction and in time. The
velocity fluctuations are then defined as

u′
i (x, y, z, t) = ui (x, y, z, t) − Ui (x, y). (1)

In this work we shall denote the streamwise, wall-normal, and spanwise velocity components
by u, v, andw, with the corresponding coordinates beingx, y, andz.

The mean flow is rescaled according to the law of the wall in the inner region and the
defect law in the outer region. The law of the wall reads

U inner = uτ (x) f1(y+), (2)

whereuτ = √
ν(∂u/∂y)wall is the friction velocity,y+ = (uτ y)/ν is the wall coordinate,

and f1 is a universal function to be determined. The defect law is

U∞ − Uouter = uτ (x) f2(η), (3)

whereη = y/δ is the outer coordinate (δ is the boundary layer thickness),U∞ is the free-
stream velocity, andf2 is a second universal function to be determined. LetUrecy and
Uinlt denote the mean velocity at the downstream station to be recycled, and at the inlet,
respectively. The law of the wall, (2), and the defect law, (3), dictate thatUrecy andUinlt are
related in the inner and outer regions via

U inner
inlt = γUrecy

(
y+

inlt

)
(4)

and

Uouter
inlt = γUrecy(ηinlt) + (1 − γ )U∞, (5)

where

γ =
(

uτ,inlt

uτ,recy

)
. (6)

The independent variables in (4) and (5),y+
inlt andηinlt , are the inner and outer coordinates

of the grid nodes at the inlet station. Thus,Urecy(y+
inlt) is the mean velocity at the recycle

station, expressed as a function ofy+ and evaluated at the inner coordinate of the mesh at
the inlet. This evaluation requires an interpolation since the inner coordinates for the grid
nodes at the recycle and inlet stations will, in general, be different. A linear interpolation
was found to be sufficiently accurate for this purpose. A similar interpolation is required
for the outer coordinate.

The mean vertical velocity in the inner and outer regions is assumed to scale as

V inner = U∞ f3(y+) (7)

and

Vouter = U∞ f4(η), (8)

where f3 and f4 are assumed to be universal functions. These scalings are used as convenient
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approximations; they are not not fully consistent with scaling of the mean velocity profile,
which, through the continuity equation, requiresV ∼ (ν/uτ ) duτ /dx in the inner region
andV ∼ uτ dδ/dx in the outer region. The above approximations are justified, however,
sinceV itself is a small quantity and accounting for the streamwise variations inuτ and
δ would introduce higher order corrections. The correct scalings could be used nonethe-
less, but this approach would require specification of the derivativesduτ /dx anddδ/dx
at the inlet, as well as a modification of the vertical velocity boundary condition given
in (25).

Applied between the recycle and inlet stations, the assumed scaling for the vertical
velocity leads to

V inner
inlt = Vrecy

(
y+

inlt

)
(9)

and

Vouter
inlt = Vrecy(ηinlt). (10)

The spanwise velocity should be zero in the mean and, thus, no scaling relations are required.
The velocity fluctuations in the inner and outer regions are decomposed further to give

(u′
i )

inner = uτ (x)gi (x, y+, z, t) (11)

and

(u′
i )

outer = uτ (x)hi (x, η, z, t). (12)

The purpose of this decomposition is to isolate the streamwise inhomogeneity through the
explicit dependence onuτ . The functionsgi andhi are then approximately homogeneous
in the streamwise direction and are, therefore, amenable to periodic boundary conditions.
In Spalart and Leonard [2] and Spalart [1], periodic boundary conditions are assumed at
this stage. The procedure here is different since we have elected to retain an inflow–outflow
structure. The fundamental difference in the present approach is that the “periodic” condi-
tion provides only one-way coupling between the recycle station and the inlet. The velocity
fluctuations at the downstream station will be related to those at the inlet using (11) and
(12), but there is no downstream transfer of information from the inlet via boundary condi-
tions. The convective outflow condition applied at the domain exit provides the necessary
downstream boundary condition.

Assuming the functionsgi andhi to be “periodic” the velocity fluctuations at the inlet
are related to those at the recycle station via

(u′
i )

inner
inlt = γ (u′

i )recy
(
y+

inlt, z, t
)

(13)

and

(u′
i )

outer
inlt = γ (u′

i )recy(ηinlt, z, t). (14)

Equations (4)–(6), (9), (10), (13), and (14) provide a means of rescaling the mean and
fluctuating velocity for both the inner and outer regions of the boundary layer. A composite
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profile that is approximately valid over the entire layer is obtained by forming a weighted
average of the inner and outer profiles:

(ui )inlt = [
(Ui )

inner
inlt + (u′

i )
inner
inlt

]
[1 − W(ηinlt)] + [

(Ui )
outer
inlt + (u′

i )
outer
inlt

]
W(ηinlt). (15)

The weighting functionW(η) is defined as

W(η) = 1

2

{
1 + tanh

[
α(η − b)

(1 − 2b)η + b

]/
tanh(α)

}
, (16)

whereα = 4 andb= 0.2. The weighting function is zero atη = 0, 0.5 atη = b, and unity at
η = 1. The parameterα controls the width of the region over which the function transitions
from 0 to 1. Forα → ∞ the distribution becomes a step function centered atη = b. Asα → 0
the transition is spread across the entire boundary layer. The values ofα andb quoted above
were determined through analysis of an independent spatially evolving boundary layer
simulation. With the present choice ofα andb, the weight will exceed unity slightly for
positions beyond the boundary layer edge(η > 1). Thus the additional constraintW = 1 for
η > 1 should be imposed if the weight is required beyondη = 1.

The rescaling operation requires the scaling parametersuτ and δ both at the recycle
station and at the inlet. These quantities can be determined from the mean velocity profile
at the rescale station, but they must be specified at the inlet. It turns out that the problem is
over-determined if bothuτ andδ are fixed independently at the inlet, and thus, an additional
relation is needed to connect one of these parameters at the inlet to the solution on the
interior. While several suitable relations exist, we have obtained the best results by fixingδ

at the inlet computinguτ via

uτ,inlt = uτ,resc

(
θresc

θinlt

)1/[2(n−1)]

, n = 5, (17)

whereθ is the momentum thickness. The above relation is similar to the Ludwig–Tillmann
correlation [14] and can be derived from the standard power-law approximations
C f ∼ R−1/n

x , θ/x ∼ R−1/n
x . In many cases it is more advantageous to control the inlet mo-

mentum thickness than the inlet boundary layer thickness. This can be done with a little
extra effort by iteratively adjusting the inlet boundary layer thickness until the target inlet
momentum thickness is achieved.

The time average used to compute the mean velocity field can be a simple running
average when the flow is fully developed, but should be modified in order to exclude starting
transients if the solution is initialized with a crude guess. A convenient way to eliminate the
starting transients is to use an average with a weight that decreases exponentially backward
in time. The following formula achieves this,

Un+1 = 1t

T
〈un+1〉z +

(
1 − 1t

T

)
Un, (18)

where1t is the computational time step,T is the characteristic time scale of the averaging
interval, and〈 〉z denotes an average in the spanwise direction. When attempting to eliminate
transients, the averaging interval should be rather short;T = 10δ/U∞ was found to work
well for this purpose. Once the flow equilibrates, the averaging interval must be increased.
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We obtained the best results by running for a period of a few hundred inertial times(δ/U∞)

with T ' 100δ/U∞ in order to stabilize the statistics and then switching to a simple running
average (T = T0 + t − t0, wheret is the current time in the simulation,t0 is the time at
which the running averaging was initiated, andT0 is the value of the averaging interval used
prior to t0).

4. NUMERICAL METHOD

In this section we describe the numerical method that will be used to generate the test
results in the subsequent section. We should emphasize that the inflow generation procedure
puts very little restriction on the numerical method, and thus, techniques different from those
described in this section could equally well be used. In addition, while the modified Spalart
method is equally applicable to DNS and LES studies, we choose to work with LES test
cases in this work.

The filtered incompressible continuity and Navier–Stokes equations are

∂ū j

∂xj
= 0, (19)

∂ūi

∂t
+ ∂ūi ū j

∂xj
= − 1

ρ

∂ p̄

∂xi
+ ν

∂2ūi

∂xj ∂xj
− ∂τi j

∂xj
, (20)

where( ) denotes application of the spatial filter. The subgrid-scale (SGS) stressτi j =
ui u j − ūi ū j , which appears in (20) is parameterized by an eddy viscosity model

τi j − 1

3
δi j τkk = −2νT S̄i j = −2C1̄2|S̄|S̄i j , (21)

whereδi j is the Kronecker delta and|S̄| = √
2S̄i j S̄i j is the magnitude of the resolved-scale

strain rate tensor,̄Si j = 1/2(∂ūi /∂xj + ∂ū j /∂xi ). The trace of the SGS stress,τkk, is not
modeled but rather is added to the pressure term. Closure of the SGS stressτi j is obtained
through specification of the model coefficientC appearing in (21).

Following Germanoet al. [15] the model coefficient,C, is determined dynamically by
considering a velocity field filtered at a scale twice as large as that corresponding to the
primary filter. The unresolved stress associated with the “test filtered” field is denoted by
Ti j and is related to the subgrid-scale stress via

Li j = Ti j − τ̂i j , (22)

where Li j = ̂̄ui ū j − ˆ̄ui ˆ̄u j is a computable “Leonard term” and̂( ) denotes the test-filter
operation. Test filtering is performed in the streamwise and spanwise directions using a
tophat filter of width equal to two mesh spacings.

When (21) as well as an analogous model forTi j are substituted in the above relation,
an overdetermined system of five equations forC arises. A unique value forC can be
determined through a least-squares minimization procedure [16, 17]. The result is

2C1̄2 = 〈Li j Mi j 〉z

〈Mkl Mkl〉z
, (23)



           

INFLOW GENERATION FOR TURBULENCE SIMULATION 243

where

Mi j = 4| ˆ̄S| ˆ̄Si j − ̂|S̄|S̄i j (24)

and where〈 〉z denotes an average in the spanwise direction. Other variants of the model
are possible and the interested reader is referred to Ghosalet al. [17] and Meneveauet al.
[18] for further discussion.

The numerical approach employed for the solution of (19) and (20) is the fractional step
method (e.g., see Chorin [19], Kim and Moin [20]). Spatial derivatives are discretized using
second-order central differences on a staggered mesh as proposed by Harlow and Welch
[21]. The discrete system is time advanced in a semi-implicit fashion, where all terms
with gradients in the wall-normal direction are treated implicitly with the Crank–Nicholson
method while the remaining terms are treated explicitly with a third-order Runge–Kutta
scheme.

The boundary conditions on the top surface of the computational domain are

∂ū

∂y
= 0, v̄ = U∞

dδ∗

dx
,

∂w̄

∂y
= 0, (25)

whereδ∗ is the boundary layer displacement thickness andU∞ is the free-stream velocity.
The derivativedδ∗/dx is computed from the mean velocity field by first computingδ∗

as a function ofx and then performing a linear regression on the resulting distribution to
determine the average slope. Although local values of the slope could be used,dδ∗/dx is
nearly constant over the limited Reynolds number variation in the present computations
and little improvement is expected if a variable velocity distribution is used. It should
be remarked, however, that local values of vertical velocity must be used if the method is
applied to flows with nonzero pressure gradients. A short discussion of this point is included
in the conclusions.

At the exit plane a convective boundary condition of the form∂ūi /∂t + c∂ūi /∂x = 0 is
applied (c is the local bulk velocity; Hanet al.[22]). The convective condition is augmented
with a correction on the streamwise velocity to ensure global mass conservation. This oper-
ation is necessary since small changes in the mass flow through the inlet or upper boundaries
can occur from time step to time step. The correction is implemented by multiplying the
streamwise velocity on the exit plane by a spatially uniform scaling factor. The correction
is typically on the order of 0.05%.

5. RESULTS

In order to validate our modifications to Spalart method, we first simulate a flat plate
boundary layer spanning a momentum thickness Reynolds number range ofRθ = 1400–1640
and compare the results with those of Spalart atRθ = 1410 and with Rai and Moin [3] at
Rθ = 1350. Next, a time series of velocity information at the midplane of this simulation is
used to generate inflow conditions for a spatially evolving flat plate simulation covering a
Reynolds number range ofRθ = 1530–2150. Due to the fact that the inflow data is extracted
from the central plane of inflow generation simulation, the two domains overlap as depicted
in Fig. 1. This feature provides a critical test for the inflow generation technique; the results
should be nearly identical in the region of overlap, and no changes in the streamwise evo-
lution of boundary layer statistics should occur as the flow develops further downstream.
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FIG. 1. Arrangement of the computational domains. The solid lines represent the boundaries of the inflow–
outflow simulation while the dashed lines represent the inflow generation calculation using the modified Spalart
method. The dotted line denotes the location of the recycle station in the inflow calculation.

For comparison, we also perform spatially evolving simulations using both the random
fluctuation and parallel flow methods.

5.1. Inflow Generation Simulation

The computational domain for the modified Spalart simulation is shown as the dashed
curve in Fig. 1 and has dimensions 10δ0 × 3δ0 × (π/2)δ0 in the streamwise, wall-normal,
and spanwise directions, respectively, whereδ0 is the 99% boundary layer thickness at the
midpoint of the domain. The momentum thickness Reynolds number at the inflow plane is
fixed atRθ = 1400. The mesh contains 100×45×64 points in the streamwise, wall-normal,
and spanwise directions, respectively. In wall units (using the wall shear evaluated at the
midpoint), the mesh resolution is1x+ ≈ 64, 1y+

wall ≈ 1.2, and1z+ ≈ 15. The mesh is
uniform in the streamwise and spanwise directions while a hyperbolic tangent stretching is
used in the normal direction to cluster points near the wall.

The recycle station was located 8.25δ0 downstream of the inlet (dotted line in Fig. 1).
The domain exit was not chosen as the recycle station in order to avoid transferring errors
associated with the outflow boundary condition to the inlet via the rescaling operation. The
station 8.25δ was determined to be as far downstream as possible without being affected
by outflow boundary condition errors.

The velocity field was initialized with the mean profile given by the Spalding [23] law.
Random fluctuations with a maximum amplitude of 10% of the free-stream value were
superimposed on the mean profile. The solution was advanced with a time step of roughly
two viscous time units(1t ≈ 2ν/u2

τ ). The simulation was run initially for 1100 inertial
timescalesδ0/U∞ in order to eliminate starting transients. Statistics were then sampled
over a period of 1400 inertial timescales. The results from this simulation will be plotted
along with those from the spatially-evolving simulation and discussed in the following
subsection.

5.2. Spatially Evolving Simulation Using Turbulent Inflow

The simulation discussed in the previous subsection was used to generate inflow condi-
tions for an inflow–outflow calculation of a flat-plate boundary layer covering the Reynolds
number rangeRθ = 1530–2150. The computational domain for this simulation is shown as
the solid line in Fig. 1. It has the same wall-normal and spanwise dimensions(3δ0×(π/2)δ0)

as the modified Spalart simulation, but it is nearly two and a half times as long in the stream-
wise direction(24δ0). The mesh spacings are identical in the two cases. The inflow–outflow
calculation makes use of 240× 45× 64 grid points.
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In order to evaluate the accuracy of the inflow condition obtained using the modified
Spalart method, calculations were also performed using the simpler random fluctuation and
parallel-flow methods. These methods are described in more detail in Appendices A and
B, respectively. The parallel-flow method also requires a separate simulation and this was
performed using the same computational domain, spatial resolution, and time step as in
the modified Spalart case. The inflow obtained using the random fluctuation method was
prescribed to have the same mean profile and Reynolds stress tensor as those produced by
the modified Spalart method. For reasons that will become apparent below, the simulation
using the random fluctuation method was performed on a domain twice as long in the
streamwise direction as compared to the other two calculations (48δ0 vs 24δ0).

In the case of the modified Spalart method, the simulation discussed in the previous
subsection was first run to a statistically stationary state. Next a time sequence of two-
dimensional velocity fields was extracted from the central plane and written to disk. The
inflow–outflow calculation used this information by reading one plane of inflow data per
time step. An analogous procedure was used for the parallel-flow method. Inflow data were
generated on the fly for the random fluctuation method.

For each of the three calculations, the computation was initialized by copying the first
plane of inflow data throughout the entire domain while superimposing random disturbances
with amplitude equal to 10% of the local mean streamwise velocity profile. Following the
initialization, a period of 70 inertial time units(U∞/δ0), or equivalently 2.9 flow through
times(U∞/XL), were used to eliminate starting transients. Statistics were then accumulated
over a period of 1400 inertial time units.

Figure 2a shows the evolution of the boundary layer thickness. For reference, the results
from the momentum integral estimate based on Cole’s Law of the wake [24] (described
in Appendix C) are also included. Focusing first on the modified Spalart simulation and
its corresponding inflow–outflow descendent (filled circle and solid line, respectively), it
is apparent that there is virtually no difference in the evolution of the boundary layer
thickness between the two simulations in the region of overlap (fromRθ = 1530 to 1640).
Furthermore, the slope that is established in the inflow calculation is preserved in the
main simulation well beyond the region of overlap. This observation indicates that the
rescaling procedure used in the modified Spalart method results in natural equilibrium
boundary layer. The results from both these simulations are in excellent agreement with
the momentum integral estimate. This is partly due to the normalization used which forces
the computation to agree with the theory at the inlet of the inflow–outflow simulation. The
relevant comparison is therefore the slope of the curve which is also accurate.

Turning to the alternative inflow generation methods, it is clear that these do not work as
well. The parallel-flow method produces a clear transient that extends to roughlyRθ = 1850.
From that point, the evolution is acceptable, with the slope matching the momentum integral
estimate reasonably well. An offset is generated by the transient, however, and this causes
the boundary layer thickness to be about 10% lower than would be expected for a given
value of Rθ . The random fluctuation inflow yields the worst results with the boundary
layer thickness never growing at the correct rate. As will be apparent in later figures,
the “turbulence” supplied at the inlet in the simulation with random fluctuation inflow
decays with streamwise distance up to a point where a “transition” takes place and realistic
turbulence begins to develop. This transition occurs betweenRθ = 1600 and 1700 and is
responsible for the change in slope of the boundary layer thickness. The transition is not
fully complete by the domain exit, however, and the correct growth rate is never achieved.
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FIG. 2. Evolution of the boundary layer thickness in the inflow–outflow simulations: (a), 99% velocity thick-
ness; (b) displacement thickness: ———, simulation using the modified Spalart method inflow; – – –,simulation
using the parallel-flow method inflow;· · ·, simulation using the random fluctuation method inflow;•−· •−, results
of the inflow calculation using the modified Spalart method; +, momentum integral estimate.

The behavior near the inlet (Rθ = 1530) is also unusual, where the curve begins on a leftward
trajectory, then doubles back and moves to the right. This anomaly is caused by an initial
drop in the momentum thickness, which enters the plot through the abscissa. Since the
momentum thickness Reynolds number is used to scale several of the subsequent plots,
similar behavior will be noted in those as well.

The evolution of the displacement thickness is shown in Fig. 2b. Once again the results
from the modified Spalart method simulation and its inflow–outflow counterpart are nearly
indistinguishable in the region of overlap. There is also no change in behavior with increasing
downstream distance and the results are in good agreement with the momentum integral
estimate. In terms of the evolution of the displacement thickness, the parallel-flow boundary
layer appears to produce acceptable inflow data. However, the actual values of the ratio of
displacement to boundary layer thickness from this method do not agree as well with the
momentum integral estimate. The random fluctuation method produces a large transient,
but the correct slope is more or less achieved by the domain exit.

Figure 3 shows the evolution of the momentum thickness. As with the boundary layer
and displacement thicknesses, the modified Spalart simulation and its inflow–outflow
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FIG. 3. Evolution of the momentum thickness in the inflow–outflow simulations: ———, simulation using
the modified Spalart method inflow; - - -, simulation using the parallel-flow method inflow;· · ·, simulation using
the random fluctuation method inflow;•−· •−, results of the inflow calculation using the modified Spalart method;
+, momentum integral estimate.

counterpart agree quite well over most of the overlap region. The small deviation near
the exit of the inflow calculation is due to errors produced by the exit boundary condi-
tion. (A similar decrease in slope can be seen near the end of the main simulation.) This
feature illustrates why it is necessary to displace the recycle station slightly upstream of
the exit boundary in the inflow generation simulation. Aside from this small deviation, the
momentum thickness evolution shows no sign of readjustment with downstream distance.
Aside from a small transient near the inlet, the parallel-flow method yields a momentum
thickness evolution that is acceptable. However, as with the other thickness parameters,
the momentum thickness is shifted from its expected value, in this case being about 10%
low. The random fluctuation method again produces poor results. The initial growth rate is
almost a factor of 4 too small. Once the flow “transitions,” the growth rate is greatly im-
proved and is comparable to the other curves. The initial slow evolution of the momentum
thickness required that the computational domain be longer for the simulation using random
fluctuation inflow as compared with the other two. This is evident in Fig. 3, where the simu-
lation with inflow generated using the random fluctuation method is carried downstream
nearly 50 initial boundary layer thicknesses. This feature underscores the two compelling
disadvantage of the random fluctuation approach: (1) a lengthy development section must
be included to allow realistic turbulence to develop and (2) it is very hard to anticipate
what values of the integral thicknesses will be produced at the end of the development
section.

The shape factor (ratio of displacement to momentum thickness) evolution is shown in
Fig. 4. Once again the modified Spalart calculation and its corresponding inflow–outflow
simulation are in good agreement within the overlap region and no change in behavior
is noted downstream. The results are also in very good agreement with the momentum
intergral estimate. The results are within 3% of the shape factor from Spalart’s [1] calcula-
tion (solid triangle) and within 4% of the experimental measurement due to Purtellet al.[25]
(solid square). When the parallel-flow method is used, the shape factor is a few percent low
at the inlet, but this error diminishes with increasing streamwise distance. The results from
the random fluctuation method are again quite poor. The shape factor increases initially
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FIG. 4. Evolution of the shape factor in the inflow–outflow simulations: ———, simulation using the mod-
ified Spalart method inflow; - - -, simulation using the parallel-flow method inflow;· · ·, simulation using the
random fluctuation method inflow;•−· •−, results of the inflow calculation using the modified Spalart method;m,
Spalart [1];j, Purtellet al. [25]; +, momentum integral estimate.

toward the laminar value of 2.6; then following “transition” it relaxes back toward more
reasonable values for a turbulent boundary layer. Note, however, that the 50 boundary layer
thicknesses of spatial evolution are not sufficient to produce a canonical turbulent boundary
layer when this method is used.

Figure 5 shows the computed skin friction. Once again the results from the modified
Spalart simulation and its inflow–outflow counterpart are in good agreement within the
region of overlap and no significant adjustment takes place downstream. They are in rea-
sonable agreement with the momentum integral estimate. The results are within 2% of the
computations of Spalart [1] (solid triangle) and within 4% of the experimental data of Murlis
et al.[26] (solid diamond). The parallel-flow method produces a small initial transient, fol-
lowed by an acceptable skin friction evolution. The random fluctuation method exhibits a

FIG. 5. Evolution of the skin friction in the inflow–outflow simulations: ———, simulation using the mod-
ified Spalart method inflow; - - -, simulation using the parallel-flow method inflow;· · ·, simulation using the
random fluctuation method inflow;•−· •−, results of the inflow calculation using the modified Spalart method;m,
Spalart [1];r, Murlis et al. [26]; +, momentum integral estimate.
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FIG. 6. Mean velocity profiles from the inflow–outflow simulations: (a), simulation using the modified Spalart
method inflow; (b), simulation using the parallel-flow method inflow; (c), simulation using the random fluctuation
method inflow: ———,Rθ = 1530; - - -, Rθ = 1850; · · · , Rθ = 2050; •, Spalart [1],Rθ = 1410; ×, Rai and
Moin [3], Rθ = 1350; – - –, 2.44 lny+ + 5.2.

sharp drop in skin friction followed by an increase once the flow develops realistic turbulent
structure.

Mean velocity profiles for three streamwise locations are shown in Fig. 6. The first station
is chosen to be inflow plane, which is effectively the result of the modified Spalart method.
This arrangement allows us to compare the results of the modified Spalart method with
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Spalart’s [1] original computations. It also makes the differences in behavior more apparent
as the flow evolves downstream.

The simulation with inflow obtained using the modified Spalart method (Fig. 6a) yields
canonical mean profiles as the flow evolves downstream. In particular, the viscous sublayer
and logarithmic region are largely unchanged when plotted in wall units, while the expected
Reynolds number dependence is displayed in the wake region. The results also agree well
with Spalart [1], except in the logarithmic region where the mean velocity is slightly over-
predicted. This defect is a common feature of simulations using finite-difference methods on
relatively coarse meshes and is not related to the rescaling approach used in the inflow gen-
eration process. In support of this claim, note that the results of Rai and Moin [3] (crosses)
contain a similar discrepancy that is actually slightly worse than in our calculation. It is also
important to note that the shape of the velocity profile shows no tendency to change with
increasing streamwise distance in the inflow–outflow simulation. The velocity overshoot
has also been observed by Cabot [27] and Lund and Kaltenbach [28] in finite difference
calculations of turbulent channel flow. As shown in both of these works, the overshoot can
be reduced through mesh refinement. In order to confirm this trend in the present study,
we performed an additional simulation using 25% more points in the streamwise direc-
tion and 50% more in the wall-normal direction. This simulation did indeed yield a slight
improvement to the logarithmic layer.

The simulation with the parallel-flow method (Fig. 6b) produces a small transient, where
the initial profile shape changes in the logarithmic and wake regions. The parallel-flow
method produces a profile that has a larger deviation in the logarithmic region. This
discrepancy diminishes with increasing streamwise distance and the profiles at the last
two stations collapse in the logarithmic region. These latter two profiles are also nearly
identical to the corresponding pair in the case with the modified Spalart method inflow
(Fig. 6a). More detailed measurements indicate that the transient is no longer visible in
the mean velocity profile beyond about 10 boundary layer thicknesses downstream of the
inlet.

The random fluctuation method (Fig. 6c) leads to rather anomalous behavior where the
profile experiences a large transient as it evolves downstream. At the second plotting station,
the mean velocity is underpredicted in the logarithmic region and an unusually large wake
develops. The profile then starts to relax back to the expected shape with an increase of
the velocity in the logarithmic region and a reduction in the wake. The apparent agreement
with the standard logarithmic law (betweeny+ = 30 and 60) for the third plotting station is
fortuitous; profiles further downstream show an overprediction in this region similar to that
in the other two simulations. Consistent with this observation is the fact that the profiles do
not reach a self-similar state by the domain exit, although it is roughly 50 initial boundary
layer thicknesses downstream of the inlet.

Figure 7 shows velocity fluctuation and shear stress profiles for three streamwise loca-
tions. The modified Spalart method (solid curve in Fig. 7a) produces results that are in good
agreement with the original calculations of Spalart. The only significant deviation is an
overprediction of the peak streamwise fluctuation(u′) and an underprediction of the span-
wise fluctuation (w′). This defect is similar to the velocity overshoot in the mean velocity
profile in that it is related to the numerical method and not to the rescaling procedure. In
support of this, note that a similar problem exists for the data of Rai and Moin [3] and that
the trend persists throughout our entire inflow–outflow calculation. Note that the profiles do
not collapse perfectly for the three Reynolds numbers. Part of this is due to the scaling used
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FIG. 7. Velocity fluctuation and shear stress profiles (scaled in wall units) from the inflow–outflow simulations:
(a), simulation using the modified Spalart method inflow; (b), simulation using the parallel-flow method inflow;
(c), simulation using the random fluctuation method inflow: ———,Rθ = 1530; - - -,Rθ = 1850;· · ·, Rθ = 2050;
filled symbols are the data from the simulations of Spalart [1] atRθ = 1410; ×, Rai and Moin [3],Rθ = 1350.

and part is due to a small adjustment as the flow evolves downstream. The chosen scaling
should collapse the profiles better in the outer region opposed to the near wall region and
this is seen to be the case. If the profiles are plotted againsty+, an improved collapse is
obtained in the near-wall region. Using inner scalings, the two downstream profiles collapse
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perfectly out to abouty+ = 300, while the profiles from the inlet station remain slightly
displaced from the other two, especially foru′ anduv. This behavior indicates that a small
adjustment takes place between the fluctuations in the inflow generation simulation and the
spatially evolving case. It is interesting to note that the streamwise fluctuations and shear
stress from the inflow plane agree best with Spalart [1]. It is possible that the rescaling
method common to both approaches results in slightly higher values of these quantities.

Simulations performed using the parallel-flow inflow (Fig. 7b) results in profiles that
yield an acceptable degree of collapse. The largest discrepancy occurs in the outer region of
the streamwise and spanwise profiles where the values from the first station are too large.
This is a side effect of the boundary conditions used in the inflow generation simulation.
When the parallel-flow method is used, the boundary layer edge is rigidly defined as the
position where the no stress, zero normal velocity boundary conditions are applied. This
condition forcesv′ to vanish at the boundary layer edge and results in a redistribution of
the wall-normal fluctuation energy intou′ andw′. Another side effect of this approach
is that there are no naturally occurring fluctuations in the region between the boundary
layer edge and the upper boundary of the computational domain at the inflow plane. In an
attempt to remedy this, random fluctuations were superimposed on the free-stream velocity
in this region. The scaling of these disturbances is rather arbitrary, and in this case, the
isotropic distributionu′

i = 0.1U∞ exp[−2(y/δ−1)] was used. The high-frequency random
disturbances decay rapidly and after a few boundary layer thicknesses of spatial evolution,
roughly the correct level of free-stream fluctuations are obtained. Aside from the problems
near the boundary layer edge, the remainder of the profiles collapse reasonably well and are
in acceptable agreement with Spalart [1]. When plotted againsty+, the collapse is improved
in the near wall region. Once again the profiles from the second two stations collapse almost
perfectly, whereas the data from the first remain slightly displaced. Thus there is also a small
readjustment of the fluctuations when the parallel-flow method is used.

As in the case of the mean velocity profile, the results from the simulation using the
random fluctuation method (Fig. 7c) are poor. The initially correct fluctuation profiles
decay in the outer region. With increasing streamwise distance, the fluctuations and shear
stress rebuild in this region, but the process is not nearly complete by the third plotting
station which is roughly 35 initial boundary layer thicknesses downstream of the inlet.

6. SUMMARY AND CONCLUSIONS

A straightforward method for generating physically realistic turbulent inflow data for
simulations of spatially developing boundary layers has been presented. The approach is
based on extracting time-dependent velocity data from an auxiliary simulation of a flat plate
boundary layer. The latter is achieved through a simplification of the method developed by
Spalart and Leonard [2] and Spalart [1] for simulation of boundary layers in periodic
domains. Our approach is to “recycle” the turbulent velocity field from a station near
the domain exit and reintroduce it as the inflow boundary condition. The end result is a
straightforward spatially evolving simulation that generates its own inflow conditions. This
approach has the advantage that an existing inflow–outflow code can be converted to an
inflow generation device through the addition of one simple subroutine. The method was
shown to produce results that agree quite well with the original calculations of Spalart [1].

The modified Spalart method was also used to generate inflow data for an inflow–outflow
large eddy simulation of a flat-plate boundary layer. For comparison, simulations were also
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performed using two simpler methods of inflow generation: data taken from a parallel-flow
boundary layer calculation and synthetic turbulence generated by a random number scheme.
The modified Spalart method consistently produced the most accurate inflow data with little
or no transient near the inlet boundary. This fact implies that the method can be used without
need for a development section. The method also gives direct control of the skin friction
and momentum thickness and thus these quantities can be set to the desired values at the
inflow boundary.

The parallel-flow method resulted in a modest transient followed by a general recovery
in most quantities within 10 boundary layer thicknesses of spatial evolution. The method
also produced somewhat inaccurate boundary layer thickness and shape factor parameters.
While the parallel-flow method used in conjunction with a development section may be
acceptable for some situations, the cost of generating inflow data is similar to the modified
Spalart method. Since the addition of a development section will increase the overall cost
of the simulation and reduce the ability to control the boundary layer characteristics at its
end, we do not see any reason to use this method in place of the modified Spalart method.

The random fluctuation method was found to result in a rather poor inlet condition.
The synthetic velocity field lacks both turbulent structure and nonlinear energy transfer.
We found that a development section of up to 50 boundary layer thicknesses is needed
to produce realistic turbulence and that the integral thicknesses and skin friction evolve
to rather nonstandard values over this distance. It should be mentioned that while more
sophisticated random fluctuation methods exist, the use of these probably does not improve
the situation much. None of the methods can produce realistic turbulent structure and a
development section will always be required in order to produce them. As an example, Le
and Moin [5, 6] used an improved method where the spectrum of the velocity fluctuations
was prescribed realistically in both space and time. Aside from the need to specify the
frequency and wavenumber spectra, this procedure also requires additional computational
effort to evaluate fast Fourier transforms. The computational grid was also very fine (DNS)
which seems aid in the development of turbulence from the random starting condition
[7, 8]. Despite these things, their computed skin friction still exhibited a large transient in
the development section, dropping by more than 70% before recovering to within 10% of
the target value at the step corner (10 boundary layer thicknesses downstream of the inlet).
Although acceptable results were obtained for the flow downstream, it could be that the
large distortion caused by the separation limits the sensitivity to the precise details of the
incoming boundary layer in this flow. It is not clear whether inflow conditions with such
large residual errors would be sufficient in the general case. In any event, there appears to
be little motivation to continue working with random fluctuation methods in light of the
availability of more accurate approaches.

While our choice of a flat plate as an inflow–outflow test case may seem overly simplified,
there is considerable additional evidence that the conclusions drawn here are more generally
applicable. As described in Section 5 a flat plate was used in this work in order to verify
that the modified Spalart method produces a natural equilibrium boundary layer. Errors in
the rescaling procedure, as well as contamination from the exit boundary condition, could
lead to nonequilibrium effects in the inflow data which would show up as an adjustment in
the boundary layer growth as it evolves downstream in the inflow–outflow simulation. Such
changes would not be visible in a more complicated flow due to the presence of pressure
gradients and/or geometrical changes. More challenging test cases have been performed,
however, and the consistent indication is that the modified Spalart method continues to be
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a means for producing an accurate inflow condition for more complicated flows. Lund and
Moin [11] used both the parallel-flow and modified Spalart methods to generate inflow for
their simulation of a boundary layer on a concave surface. They found that the modified
Spalart method produced the most accurate inflow condition. Wu and Squires [29] used
the method to generate inflow data for a boundary layer that encounters a bump. They
obtained good agreement with experimental data without need for a development section.
Finally, Wang and Moin [30] used the method for their simulation of the aft section of a
hydrofoil. Once again, good agreement with experimental data was obtained without need
for a development section.

Another, perhaps surprising, result of our study is that the modified Spalart method will
probably result in the lowest overall cost when the expense of a development section is
considered. While the supposed main motivation for using the random fluctuation method
is its simplicity and extreme computational efficiency, a development section of at least 20
boundary layer thicknesses is required. This distance is double the extent of the domain used
in our modified Spalart simulation, and thus, the latter method used without a development
section will cut in half the overhead for generating the inflow data. It is possible to lower
the overhead further by taking advantage of the fact that the inflow generation code can
make use of a regular cartesian grid and a direct solver for the pressure Poisson equation
(for incompressible flow). Our experience is that such a simplified code runs at least 4 times
faster on a per mesh point per time step basis, as compared with a complex geometry code
that would normally be used for the main simulation. Thus, if a dedicated code is used for
the inflow generation, a cost savings of up to a factor of 8 can be realized when our method
is compared with the random fluctuation method used in conjunction with a development
section. The cost for generating inflow data with the parallel-flow method is similar to that
of the modified Spalart method, but the inclusion of a development section will result in
higher overall cost.

Finally we should mention that while our method appears to be rather accurate and
efficient, there are a few potential enhancements that may serve to increase its utility further.
The first of these is to merge the inflow generation procedure with the main simulation by
simply recycling the velocity field taken a short distance downstream of the inlet in the
main simulation. This procedure has the advantage that it avoids an auxiliary simulation
and effectively eliminates the influence of the outflow boundary condition errors on the
velocity field at the recycle station. In order to utilize this approach, however, the boundary
layer must not be acted on by significant pressure gradients or geometrical changes between
the inlet and recycle station. In effect this requirement may dictate that the simulation begin
further upstream, which will reduce some of the benefit of this approach. Another technical
detail is that it would be wasteful to subject the entire simulation domain to the “development
time” during which a realistic inflow condition evolves out of an arbitrary starting condition.
Thus, one should really achieve a stationary state by running a modified Spalart simulation
on a limited domain first before switching over to the integrated inflow procedure.

The second potential enhancement is to account for the effects of a pressure gradient in
the inflow condition. Doing this may avoid the necessity of displacing the inlet boundary
upstream to a position where the pressure gradient is minimal. For cases in which severe
or extended pressure gradients exist near the inlet boundary, the modified Spalart method
can be extended to allow for a restricted class of equilibrium boundary layers that de-
velop under power-law pressure gradients [31]. While equilibrium pressure distributions
may not be that common in practice, they certainly can be used as a first approximation.
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Assuming an equilibrium pressure distribution, the same scaling laws described in Section
3 continue to apply and the required changes involve only the computation of the fric-
tion velocity at the inlet and the vertical velocity distribution at the upper boundary. The
Ludwig–Tillmann [14] correlation applied between the rescale and inlet location is used
to obtain the friction velocity at the inlet. The vertical velocity at the upper boundary is
determined from the integrated continuity relation,v(x) =Uedδ∗/dx + (δ∗ − h)dUe/dx,
whereUe is the local boundary layer edge velocity. Although extensive tests of simulations
with pressure gradients have not been performed, the preliminary conclusion from a few
isolated test cases is that the procedure continues to produce accurate inflow data under these
circumstances.

APPENDIX

A. Random Fluctuation Inflow Generation Method

The random fluctuation method is designed to match a prescribed mean flow and Reynolds
stress tensor. Let the target mean flow profile be denoted byU (y), V(y), and the tar-
get Reynolds stress tensor byRi j (y) = 〈ui u j 〉z,t , whereui is the velocity fluctuation (i.e.,
〈ui 〉z,t = 0). The operation〈 〉z,t is an average over the spanwise direction and time. At each
time step in the simulation, inflow data are generated in a loop running over they direction.
For eachy location, the following sequence of operations is peformed:

1. Three sequences of random numbersũ(z), ṽ(z), w̃(z), are generated. They are condi-
tioned so that each distribution has zero mean, unit variance, and zero covariance with the
other two distributions (i.e.,〈ũi ũi 〉z = 0 for i 6= j ).

2. The velocity field is then constructed according to

ui (y, z) = Ui (y) + ai j ũ j (z), (26)

where the elements of the amplitude tensorai j are related to the Reynolds stress tensor via

a11 = √
R11,

a21 = R21/a11,

a22 =
√

R22 − a2
21,

a31 = R31/a11,

a32 = (R32 − a21a31)/a22,

a33 =
√

R33 − a2
31 − a2

32.

(27)

All elements ofai j not listed above are zero.

Our procedure makes use of random numbers that are de-correlated in both space and
time. The basic procedure can be modified to allow for nonzero correlations through the
use of a fast Fourier transform in space and/or time. In this case, the spectrum of the
fluctuations is prescribed in Fourier space and an inverse transform provides the velocity
fluctuation distribution. Le and Moin [5, 6] used this procedure to generate inflow condi-
tions for a backward-facing step. The behavior of the method is much the same as in our
simplified approach, however, and we have not gone to the extra effort to implement this
strategy.
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B. Parallel-Flow Inflow Generation Method

The parallel-flow boundary layer simulation is very similar to a turbulent channel flow
calculation. Periodic boundary conditions are used in the streamwise and spanwise direc-
tions and the flow is driven by a constant streamwise body force (uniform pressure gradient).
The only difference with a channel flow calculation is that the no slip conditions at the upper
wall are replaced by the following symmetry conditions:

∂u

∂y
= 0, v = 0,

∂w

∂y
= 0. (28)

For a laminar flow, the procedure would simply produce the lower half of a channel flow
profile. In a turbulent flow, the symmetry conditions also produce something like half of a
channel flow, which can be used as a rough approximation to a turbulent boundary layer.

C. Momentum Integral Analysis

The momentum integral estimates used in this work can be found in White [32]. The
relevant formulas are repeated here for convenience. For the purpose of the estimates, the
mean velocity profile is assumed to obey the law of the wake [24] over the entire extent of
the layer:

U+ = 1

κ
ln(y+) + B + 25

κ
sin2

(
π

2
η

)
, (29)

whereU+ = U/uτ , y+ = yuτ /ν, η = y/δ, κ, B, are constants, and5 is a parameter that
depends on the pressure gradient. The boundary layer edge,δ, is defined as the position
whereU = U∞. Making use of this condition, the above relation implies

Rδ ≡ U∞δ

ν
= λ exp[κ(λ − B) − 25], (30)

whereλ is the wall friction parameter:

λ ≡ U∞
uτ

=
√

2

C f
. (31)

The above two relations are used to rewrite (29) as

U

U∞
= 1 + 1

κλ

{
ln(η) + 25

[
sin2

(
π

2
η

)
− 1

]}
. (32)

This relation can be integrated to yield the displacement and momentum thicknesses. The
end results are

Rδ∗ =
(

1 + 5

κλ

)
Rδ, (33)

Rθ =
{

1 + 5

κλ
− 1

κ2λ2

[
2 + 25

(
Si(π)

π
+ 1

)
+ 3

2
52

]}
Rδ, (34)

where Si(π) ' 1.852 is the sine integral evaluated atπ .
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The streamwise distance is determined by integrating the relation

2
d Rθ

d Rx
= C f (35)

while using (31) to yield

Rx − Rx0 =
∫ λ

λ0

λ2 d Rθ

dλ
dλ, (36)

where the subscript 0 refers to reference position (taken to be the inlet of the inflow–outflow
simulations).

Note that (30), (33), (34), and (36) contain the wall shear parameter,λ, as an independent
variable. Results are generated by stepping through values ofλ and then rearranging the
outputs to yield the various quantities as functions of eitherRθ or Rx. The constants were
set as follows:κ = 0.41, B = 5.0, and5 = 0.5.
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